End-to-End Language-Guided RL for Legged Robots

Raül Ojeda Gandia

ARF - 24/25

May 2025

Towards Generalist Robotics

The Intelligence Gap

- Large Language Models demonstrate near-human intelligence in software
- Physical intelligence in robotics remains limited and task-specific

Why Language-Driven Robot Control?

- Language is humanity's interface for complex reasoning
- Enables robots to leverage semantic understanding from LLMs

Social & Environmental Impact

- Social: Generalist robots could assist in diverse daily tasks
- Environmental: Single adaptable robots replace multiple specialized ones

Traditional Approaches

- Rule-based systems utilizing predefined motion primitives
- Typically limited to narrow command sets and specific contexts

Recent Advances

- **IsaacLab Environment**: Provides a scalable simulation platform for velocity tracking and control policy training forms the foundation of our work
- Kumar et al. (2023) Words into Action: Learning Diverse Humanoid Robot Behaviors using Language-Guided Iterative Motion Refinement
- Sun et al. (2024) Leveraging Large Language Models for Comprehensive Locomotion Control in Humanoid Robots

Task Description

Robot

• Humanoid robot Unitree G1, 1.20 meters tall, 35 kg, 37 DOF

Data Acquisition Process

- Generated diverse natural language movement commands using Claude.ai
- Each command paired with target velocities (linear_x, linear_y, angular_z)
- Pre-computed transformer embeddings stored as .npy files
- · Progressive dataset expansion to address learning imbalances

Dataset Statistics	istics Value		Movement Distribution	Count	
Total commands	922		Forward commands	412 (45%)	
English	598 (65%)		Backward commands	125 (14%)	
Spanish	142 (15%)		Turn commands	198 (22%)	
German	76 (8%)		Stop commands	89 (10%)	
French	68 (7%)		Lateral commands	62 (7%)	
Other	38 (4%)		Combined movements	36 (4%)	

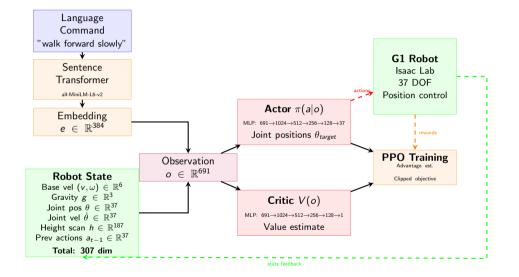
Feature Extraction & Input/Output

Language Embedding

- Model: all-MiniLM-L6-v2 (22M params)
- Optimized for semantic similarity

Observation Space (691D)

- Motion: Linear/Angular Velocity $v, \omega \in \mathbb{R}^3$, Gravity Vector $g \in \mathbb{R}^3$
- Joints: Positions/Velocities $\theta, \dot{\theta} \in \mathbb{R}^{37}$
- Context: Language Embedding $e \in \mathbb{R}^{384}$, Height Scan $h \in \mathbb{R}^{187}$, Previous Action $a_{t-1} \in \mathbb{R}^{37}$


Output

• Joint Position Targets $heta_{target} \in \mathbb{R}^{37}$

Reward Components

- Task: Language tracking (2.5), Success bonus (1.5)
- Regularization: Torques, accelerations, smoothness
- Gait Quality: Air time, orientation, joint stability

Model Architecture

Experimental Design

Training Infrastructure

- Environment: Isaac Lab with 4096 parallel environments
- Hardware: Laptop 4070 GPU, 32 GB RAM, achieving 38,000+ steps/second
- Total training time: ${\sim}20$ hours across multiple sessions

Progressive Training Curriculum

- 1. Phase 1 (0-3k iterations): Basic movement
 - 30 simple slow-movement commands only
 - Robot learned stability but minimal movement
- 2. Phase 2 (3k-10k iterations): Expanded command set
 - 90 commands: slow + fast movements, all directions
 - Added anti-standing penalty to encourage motion
- 3. Phase 3 (10k-17k iterations): Multilingual generalization
 - 600 commands with linguistic variations
 - Multiple languages (EN, ES, DE, FR, ZH)
- 4. Phase 4 (17k-25k iterations): Forward motion correction
 - Added 300+ forward movement commands
 - Addressed directional learning imbalance
 - Final dataset: 922 total commands

Test Set Composition (120 commands)

- Close variations: 25
- Novel concepts: 19
- Novel verbs: 15
- Multilingual: 10
- Slang/Informal: 10
- **Typos**: 9
- Formal/Technical: 10
- Uncertain: 8
- Abbreviations: 7
- Emphasis: 7

Movement Distribution

- Forward: 45 commands
- Backward: 12
- Left/Right turns: 30
- Stop: 15
- Lateral: 8
- Combined: 10

Performance by Test Category

Test Category	Success	Failure
Close variations (25)	19	6
Novel concepts (19)	13	6
Novel verbs (15)	8	7
Multilingual (10)	4	6
Slang/Colloquial (10)	4	6
Typo variations (9)	3	6
Formal/Technical (10)	6	4
Uncertain/Hedged (8)	4	4
Emphasis/Urgency (7)	4	3
Abbreviations (7)	4	3

Performance by Movement Type

Movement	Success	Failure
Forward (45)	13	32
Left turn (15)	10	5
Right turn (15)	7	8
Stop (15)	10	5
Backward (12)	9	3
Combined (10)	8	2
Lateral (8)	5	3

Overall Test Set Performance Total Commands: 120 Success: 69/120 (58%)

Successful Generalizations

- \checkmark "robot march forward" \rightarrow Correct forward motion
- \checkmark "trun lft" \rightarrow Handled typos correctly
- \checkmark " bkwd" \rightarrow Understood abbreviation
- \checkmark "gira a destra per favore" \rightarrow Cross-lingual transfer
- \checkmark "go back home" \rightarrow Novel concept

Failed Generalizations

- <code>X</code> "navigate to my position" \rightarrow No movement
- <code>X</code> "if you dont mind go right" \rightarrow Sliding right instead of rotating right
- \checkmark "scoot forward" \rightarrow Novel verb
- <code>X</code> "patrol forward and back" \rightarrow Only forward

Conclusions

Key Achievements

- Achieved 58% success rate on diverse test set (120 novel commands)
- Demonstrated emergent capabilities

Technical Insights

- Direct language-to-action mapping works without symbolic intermediates
- Progressive curriculum essential for balanced learning

Towards Generalist Robotics

Natural language provides a scalable interface for robot control, enabling semantic generalization beyond explicit training data

Future Work

Immediate Improvements

- Address forward motion bias through improved reward shaping
- Incorporate larger language models for better semantic understanding

Physical Robot Deployment

• Transfer learned policies to real G1 hardware

Advanced Capabilities

- Vision-language grounding: "walk to the red object"
- Integration with LLM planners for complex reasoning

Long-term Vision

From single commands to conversational robot control enabling truly generalist physical AI systems

Thank you!

Questions?

Raül Ojeda Gandia (ARF - 24/25)